function x = norms_Math(A) home if nargin == 0 A = [ 1 2 3; 4 9 6; 0 -5 120]; end [m,n] = size(A); if m > 1 & n> 1 flag = 0; fprintf('exoume pinaka !\n') else flag = 1; fprintf('exoume dianisma !\n') end if flag == 1 x1 = norm(A,1); x2 = norm(A,2); xinf = norm(A,Inf); fprintf(' h proti norma tou dianismatos A isoutai me %f \n' , x1) fprintf(' h deyteri norma tou dianismatos A isoutai me %f \n' , x2) fprintf(' h apeirosti norma tou dianismatos A isoutai me %f \n' , xinf) x = [x1 x2 xinf]; else x = []; for i = 1:n disp(A(:,i)) %emfanizo thn trexousa stili toy A x1 = norm(A(:,i),1); x2 = norm(A(:,i),2); xinf = norm(A(:,i),Inf); fprintf() fprintf() fprintf() fprintf('\n') x = ? ; end end % gemiste ton parapano kodika oste na emfanizontai ta parakato minimata otan kaleitai ti sinartisi xoris orisma, diladi x = norms_Math() % exoume pinaka ! % 1 % 4 % 0 % % h proti norma ths 1 sthlhs toy pinaka A isoutai me 5.000000 % h deyteri norma ths 1 sthlhs toy pinaka A isoutai me 4.123106 % h apeirosti norma ths 1 sthlhs toy pinaka A isoutai me 4.000000 % % 2 % 9 % -5 % % h proti norma ths 2 sthlhs toy pinaka A isoutai me 16.000000 % h deyteri norma ths 2 sthlhs toy pinaka A isoutai me 10.488088 % h apeirosti norma ths 2 sthlhs toy pinaka A isoutai me 9.000000 % % 3 % 6 % 120 % % h proti norma ths 3 sthlhs toy pinaka A isoutai me 129.000000 % h deyteri norma ths 3 sthlhs toy pinaka A isoutai me 120.187354 % h apeirosti norma ths 3 sthlhs toy pinaka A isoutai me 120.000000 % % % x = % % 5.0000 4.1231 4.0000 % 16.0000 10.4881 9.0000 % 129.0000 120.1874 120.0000