# norms_Math_unsolved

```function x = norms_Math(A)
home
if nargin == 0
A = [ 1 2 3; 4 9 6; 0 -5 120];
end

[m,n] = size(A);
if m > 1 & n> 1
flag = 0;
fprintf('exoume pinaka !\n')
else
flag = 1;
fprintf('exoume dianisma !\n')
end

if flag == 1

x1 = norm(A,1);
x2  = norm(A,2);
xinf = norm(A,Inf);

fprintf(' h proti norma tou dianismatos A isoutai me %f \n' , x1)
fprintf(' h deyteri norma tou dianismatos A isoutai me %f \n' , x2)
fprintf(' h apeirosti norma tou dianismatos A isoutai me %f \n' , xinf)

x = [x1 x2 xinf];

else
x = [];
for i = 1:n

disp(A(:,i)) %emfanizo thn trexousa stili toy A

x1 = norm(A(:,i),1);
x2  = norm(A(:,i),2);
xinf = norm(A(:,i),Inf);

fprintf()
fprintf()
fprintf()
fprintf('\n')

x = ? ;
end
end

% gemiste ton parapano kodika oste na emfanizontai ta parakato minimata otan kaleitai ti sinartisi xoris orisma, diladi x = norms_Math()
% exoume pinaka !
%      1
%      4
%      0
%
%  h proti norma ths 1 sthlhs toy pinaka A isoutai me 5.000000
%  h deyteri norma ths 1 sthlhs toy pinaka A isoutai me 4.123106
%  h apeirosti norma ths 1 sthlhs toy pinaka A isoutai me 4.000000
%
%      2
%      9
%     -5
%
%  h proti norma ths 2 sthlhs toy pinaka A isoutai me 16.000000
%  h deyteri norma ths 2 sthlhs toy pinaka A isoutai me 10.488088
%  h apeirosti norma ths 2 sthlhs toy pinaka A isoutai me 9.000000
%
%      3
%      6
%    120
%
%  h proti norma ths 3 sthlhs toy pinaka A isoutai me 129.000000
%  h deyteri norma ths 3 sthlhs toy pinaka A isoutai me 120.187354
%  h apeirosti norma ths 3 sthlhs toy pinaka A isoutai me 120.000000
%
%
% x =
%
%     5.0000    4.1231    4.0000
%    16.0000   10.4881    9.0000
%   129.0000  120.1874  120.0000
```

Posted in Uncategorized