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Abstract. Semi-supervised classification methods are based on the use of  
unlabeled data in combination with a smaller set of labeled examples, in order 
to increase the classification rate compared with the supervised methods, in 
which the total training is executed only by the usage of labeled data. In this 
work, a self-train Logitboost algorithm is presented. The self-train process  
improves the results by using the accurate class probabilities for which 
the Logitboost regression tree model is more confident at the unlabeled  
instances. We performed a comparison with other well-known semi-supervised 
classification methods on standard benchmark datasets and the presented  
technique had better accuracy in most cases. 
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1 Introduction 

Supervised machine learning algorithms need a large number of labeled data to assign 
an unlabeled example to a class. As a consequence, this characteristic demands too 
much effort from a specialist, as the stage of labeling all the instances, is necessary. 
On the contrary, semi-supervised techniques are more automated, since their needs for 
labeled data are dramatically reduced and can be easily applied in a variety of fields, 
such as text mining, image or speech classification etc. [2]. 

Sun [11] reviews theories developed to understand the properties of multi-view 
learning and gives a taxonomy of approaches according to the supervised and semi-
supervised machine learning mechanisms involved.  In this work, a self-training me-
thod that combines the power of Logitboost and regression trees for semi-supervised 
tasks is proposed. We performed a comparison with other well-known semi-
supervised classification methods on standard benchmark datasets and the presented 
technique had better accuracy in most cases. 

2 Semi-supervised Techniques 

The main idea of the self-training technique is the tuning of more than one classifiers, 
so as to achieve a better classification accuracy [1]. The whole procedure is split into 
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several phases. During the first one, a classifier of the user’s choice is trained using 
the small set of labeled examples. After this phase has been completed, unlabeled 
examples are examined and classified according to the knowledge that our learner has 
acquired from the previous stage. When the second phase has been finished, all the 
instances that were previously unlabeled and for which the learner’s prediction ex-
ceeds a trust-threshold, are added to the training set along with their predicted labels. 
Next steps include the re-training of the classifier, under the assumption that the new 
training set provides us more useful information, until all the stopping criteria are met.  

Co-Training is based on the hypothesis that the attribute space can be split into two 
disjoint subsets and that each subset may contribute to correct classification [4].  
According to this guess, a single learner is trained on each subset. To begin with, both 
learners are trained only on labeled data. The next phase comprises the classification 
of usually a small number of unlabeled examples by both previous learners. During 
this phase, the most confident predictions of each one learner are added to the training 
set of the other one. This procedure continues to be repeated for a number of times, 
until a stopping criteria to be satisfied. Didaci et al [16] evaluated co-training perfor-
mance as a function of the size of the labeled training set. It seems that the concept of 
using co-training can work even with very few instances per class. However, Du et al 
[20] made a number of experiments and came to the conclusion that relying on small 
labeled training sets, verification of both the sufficiency and independence assump-
tions of splitting single view into two views are unreliable.   

Sun and Jin [10] proposed robust co-training, in which the predictions of  
co-training on the unlabeled data are tested through Canonical correlation analysis 
(CCA) with the intention to enlarge the training set, adding only these instances 
whose predicted labels are consistent with the outcome of CCA. Wang et al [5]  
proposed to combine the probabilities of class membership with a distance metric 
between unlabeled instances and labeled instances. If two instances have the same 
class probability value, the one with the smallest distance will have larger chance to 
be selected. Xu et al [6] proposed DCPE co-training algorithm. For each classifier, if 
unlabeled instances have the same prediction labels and the highest class probability 
values differences between this classifier and the other one, then these unlabeled  
examples are added into the training set of the classifier. COTRADE [18] uses a 
number of predicted labels with higher confidence of either learner are passed to the 
other one, if a number of constraints are imposed to avoid introducing noise. 

Li and Zhou [7] proposed Co-Forest algorithm. According to this algorithm, a 
number of Random Trees are trained on bootstrap sample data from the data set. Then 
each Random Tree is refined with a small number of unlabeled instances during the 
training process and the final prediction is produced by majority voting. Deng and 
Guo [12] proposed a new Co-Forest algorithm named ADE-Co-Forest which uses a 
data editing technique to identify and discard probably mislabeled instances during 
the iterations. Co-training by committee has been proposed by Hady and Schwenker 
[8].  In their work, an initial committee was built with the labeled data set. Three  
ensemble methods were used: Bagging, AdaBoost and Random Subspace and  
these semi-supervised learning algorithms were named as CoBag, CoAdaBoost  
and CoRSM, respectively. Liu and Yuen [22] also proposed a boosted co-training 
algorithm. 
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Tri-training algorithm has been proposed by Zhou and Li [3]. In each round of tri-
training algorithm, an unlabeled instance is labeled for a learner if the other two 
learners agree on the labeling. Guo and Li [17] proposed improved tri-training algo-
rithm (im-tri-training) that addresses some issues existed in tri-training such as  
unsuitable error estimation. Democratic co-learning [9] also uses multiple classifiers. 
Initially, each classifier is trained with the same data. The classifiers are then used to 
label the unlabeled data. Each instance is then labeled with the majority voting, and 
the labeled instance is added to the training set of the classifier whose prediction dis-
agree with the majority. Sun and Zhang [19] proposed an ensemble of classifiers to be 
trained from each view, and the consensus prediction of the ensemble to be used to 
select confident labeled instances from the unlabeled data to teach the other ensemble 
from the other view. 

3 Proposed Algorithm 

Regression trees are obtained using a fast divide and conquer greedy algorithm that 
recursively partitions the given training set into smaller subsets. The most well-known 
regression tree inducer is the M5 [14].  In spite of their advantages regression trees 
are also known for their instability, since a small change in the training data can lead 
to a different choice when building a node, which in turn can produce a dramatic 
change in the regression tree, particularly if the change occurs in top level nodes.  
A well-known technique to improve the accuracy of tree-based classifiers is the 
boosting procedure. The idea of boosting is to combine the prediction of many simple 
classifiers to form a powerful 'committee'. The simple classifiers are trained on  
reweighted versions of the training data, such that training instances that have been 
misclassified by the classifiers built so far, receive a higher weight and the new  
classifier can concentrate on these hard instances. 

Additive logistic regression algorithm: Logitboost [13] is based on the observation 
that boosting is in essence fitting an additive logistic regression model to the training 
data. An additive model is an approximation to a function F(x) of the form: 

  (1) 

where the cm are constants to be determined and fm are basis functions. It must be 
mentioned that m is number of classifiers and is set equal to 10 in our implementa-
tion. 

If we assume that F(x) is the mapping that we seek to fit as our strong aggregate 
hypothesis, and f(x) are our weak hypotheses, then it can be shown that the two-class 
boosting algorithm is fitting such a model by minimizing the criterion:  

  (2) 
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where y is the true class label in {-1,1}. Logitboost minimises this criterion by using 
Newton-like steps to fit an additive logistic regression model to directly optimise the 
binomial log-likelihood: 

  (3) 

Friedman et al [13] used Logitboost algorithm with one level decision tree as base 
learner for solving supervised classification problems. A very useful property of this 
classification method is that it directly yields class conditional probability estimates 
that are crucial for constructing self-train classifiers. Regression trees are known for 
their simplicity and efficiency when dealing with domains with large number of fea-
tures and instances. In this work, we propose a self-training method that combines the 
power of Logitboost and regression trees for semi-supervised tasks. The proposed 
algorithm (Self-Logit-M5) is presented in Figure 1. The self-train process produces 
good results by using the more accurate class probabilities of Logitboost regression 
tree model for the unlabeled instances. 

 
Input: An initial set of labeled instances L and a set of unlabeled instances U 
Initialization: 
• Train Logitboost using M5 as base model on L 
Loop for a number of iterations (40 in our implementation) 
• Use Logitboost classifier to select the most confident predictions, remove 

them from U and add them to L. In each iteration about 2 instances per class 
are removed from U and added to L. 

Output: Use Logitboost trained on L to predict class labels of the test cases. 

Fig. 1. The Self-Logit-M5 Algorithm 

For the implementation, it must be mentioned that we made use of the free availa-
ble code of Weka [24] and KEEL [25]. 

4 Experiments 

The experiments are based on standard classification datasets taken from the KEEL-
dataset repository [23]. These data sets have been partitioned using the 10-fold cross-
validation procedure. For each generated fold, a given algorithm is trained with the 
examples contained in the rest of folds (training partition) and then tested with the 
current fold. Each training partition is divided into two parts: labeled and unlabeled 
examples. In order to study the influence of the amount of labeled data, we take two 
different ratios when dividing the training set: 10% and 20%. 

For the experiments, the proposed method has been compared with other state of 
the art algorithms integrated into the KEEL tool [23] such as Self-Training (C45) [1], 
Self-Training (SMO) [27], Co-Bagging (C45) [8], TriTraining (C45) [3], Democratic-
Co [9], CoForest [7] and Co-Training (C45) [4]. It must be mentioned that the default 
parameters of KEEL were used for all the tested algorithms. The classification  

2 ( )log(1 )yF xe−− +
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accuracy of each tested algorithm using 10% and 20% as labeled ratio is presented in 
Table 1 and Table 2 respectively. As it concerns the values in bold style, they actually 
point the best accuracy value in each row among the different algorithms. 

Table 1. Classification accuracy (Labeled Ratio 10%) 

 
Datasets 

Algorithms1 
Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8 

appendicitis 0.862 0.832 0.754 0.805 0.805 0.822 0.823 0.832 
australian 0.828 0.828 0.796 0.828 0.845 0.845 0.841 0.835 

banana 0.877 0.848 0.896 0.855 0.848 0.842 0.527 0.848 
breast 0.672 0.722 0.691 0.725 0.722 0.729 0.734 0.677 
bupa 0.606 0.539 0.633 0.612 0.574 0.510 0.585 0.574 
chess 0.956 0.954 0.896 0.954 0.958 0.920 0.944 0.952 

coil2000 0.922 0.937 0.572 0.935 0.936 0.932 0.930 0.940 
contraceptive 0.500 0.489 0.450 0.483 0.481 0.436 0.485 0.446 

crx 0.801 0.866 0.832 0.850 0.856 0.850 0.821 0.816 
dermatology 0.863 0.856 0.840 0.876 0.882 0.876 0.905 0.843 

ecoli 0.641 0.647 0.622 0.656 0.659 0.637 0.628 0.577 
flare 0.721 0.721 0.516 0.714 0.716 0.721 0.402 0.574 

german 0.713 0.706 0.592 0.711 0.717 0.716 0.686 0.690 
glass 0.553 0.485 0.496 0.490 0.492 0.487 0.559 0.450 

haberman 0.650 0.705 0.601 0.712 0.709 0.716 0.601 0.719 
heart 0.763 0.678 0.770 0.704 0.715 0.800 0.693 0.700 

hepatitis 0.793 0.834 0.834 0.834 0.834 0.834 0.811 0.834 
housevotes 0.921 0.941 0.876 0.920 0.916 0.890 0.922 0.823 

iris 0.900 0.840 0.940 0.800 0.727 0.913 0.933 0.847 
led7digit 0.686 0.614 0.568 0.564 0.604 0.616 0.634 0.514 

lymphography 0.737 0.631 0.549 0.595 0.612 0.490 0.646 0.573 
magic 0.849 0.822 0.839 0.832 0.825 0.784 0.844 0.820 

mammographic 0.809 0.803 0.782 0.809 0.818 0.796 0.794 0.807 
monk-2 0.953 0.973 0.783 0.966 0.966 0.908 0.939 0.973 

mushroom 0.996 0.997 0.992 0.995 0.996 0.993 0.908 0.997 
nursery 0.962 0.906 0.815 0.901 0.904 0.895 0.381 0.903 

page-blocks 0.953 0.952 0.940 0.957 0.956 0.908 0.959 0.949 
penbased 0.965 0.892 0.976 0.905 0.903 0.947 0.955 0.896 
phoneme 0.829 0.777 0.829 0.789 0.777 0.787 0.801 0.765 

pima 0.680 0.664 0.608 0.634 0.656 0.697 0.663 0.670 
ring 0.904 0.840 0.970 0.858 0.854 0.874 0.882 0.837 

saheart 0.645 0.652 0.613 0.650 0.678 0.682 0.656 0.636 
satimage 0.870 0.805 0.825 0.821 0.822 0.846 0.860 0.806 
segment 0.931 0.890 0.907 0.916 0.900 0.903 0.903 0.902 

sonar 0.686 0.643 0.669 0.701 0.702 0.601 0.755 0.582 
spambase 0.917 0.867 0.851 0.895 0.881 0.878 0.919 0.888 

spectfheart 0.749 0.682 0.656 0.757 0.757 0.738 0.775 0.724 
splice 0.938 0.827 0.541 0.825 0.825 0.898 0.507 0.831 
texture 0.929 0.831 0.963 0.850 0.852 0.894 0.907 0.829 
thyroid 0.987 0.992 0.932 0.991 0.992 0.939 0.986 0.992 

tic-tac-toe 0.741 0.711 0.627 0.704 0.709 0.690 0.597 0.693 
titanic 0.780 0.775 0.776 0.784 0.777 0.776 0.707 0.778 

twonorm 0.949 0.814 0.973 0.860 0.862 0.965 0.899 0.809 
vehicle 0.633 0.579 0.586 0.603 0.619 0.502 0.612 0.575 
vowel 0.495 0.424 0.463 0.456 0.453 0.416 0.522 0.438 
wine 0.854 0.741 0.955 0.787 0.820 0.949 0.859 0.808 

wisconsin 0.945 0.909 0.952 0.928 0.931 0.965 0.936 0.906 
yeast 0.506 0.462 0.458 0.477 0.491 0.489 0.456 0.489 
zoo 0.841 0.679 0.493 0.746 0.719 0.931 0.909 0.636 

                                                           
1
Alg1: Self-training (Logitboost), Alg2: Self-Training (C45), Alg3: Self-Training (SMO), Alg4: Co-

Bagging (C45), Alg5: TriTraining (C45), Alg6: Democratic-Co, Alg7: CoForest, Alg8: Co-Training (C45) 
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Table 2. Classification accuracy (Labeled Ratio 20%)  

 
Datasets 

Algorithms2 
Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8 

appendicitis 0.887 0.851 0.705 0.832 0.832 0.860 0.877 0.850 
australian 0.859 0.858 0.830 0.836 0.852 0.858 0.842 0.838 

banana 0.886 0.880 0.899 0.880 0.874 0.879 0.541 0.874 
breast 0.687 0.716 0.636 0.722 0.723 0.718 0.727 0.723 
bupa 0.641 0.606 0.611 0.603 0.620 0.550 0.602 0.606 
chess 0.978 0.978 0.948 0.978 0.978 0.939 0.951 0.976 

coil2000 0.923 0.940 0.817 0.934 0.937 0.933 0.927 0.940 
contraceptive 0.515 0.478 0.471 0.481 0.488 0.484 0.494 0.504 

crx 0.833 0.857 0.860 0.851 0.854 0.859 0.841 0.850 
dermatology 0.924 0.910 0.910 0.919 0.921 0.930 0.924 0.879 

ecoli 0.774 0.720 0.670 0.732 0.721 0.724 0.748 0.733 
flare 0.720 0.728 0.585 0.718 0.727 0.740 0.416 0.690 

german 0.714 0.697 0.618 0.712 0.684 0.729 0.684 0.699 
glass 0.628 0.509 0.551 0.563 0.610 0.480 0.634 0.535 

haberman 0.686 0.709 0.660 0.735 0.709 0.722 0.640 0.735 
heart 0.789 0.752 0.789 0.748 0.793 0.822 0.730 0.756 

hepatitis 0.747 0.843 0.834 0.820 0.843 0.834 0.861 0.843 
housevotes 0.931 0.959 0.888 0.953 0.959 0.902 0.945 0.936 

iris 0.893 0.893 0.913 0.867 0.880 0.953 0.940 0.893 
led7digit 0.692 0.678 0.644 0.658 0.676 0.662 0.678 0.644 

lymphography 0.817 0.706 0.649 0.747 0.755 0.461 0.693 0.775 
magic 0.855 0.830 0.842 0.841 0.834 0.802 0.852 0.832 

mammographic 0.823 0.823 0.793 0.825 0.816 0.808 0.787 0.823 
monk-2 0.977 0.980 0.869 0.973 0.973 0.944 0.979 0.980 

mushroom 1.000 0.999 0.997 0.999 0.999 0.998 0.910 0.999 
nursery 0.984 0.924 0.576 0.924 0.926 0.911 0.384 0.926 

page-blocks 0.965 0.960 0.957 0.961 0.961 0.912 0.959 0.961 
penbased 0.979 0.924 0.983 0.937 0.929 0.963 0.966 0.925 
phoneme 0.851 0.784 0.848 0.824 0.798 0.806 0.831 0.802 

pima 0.734 0.681 0.646 0.708 0.694 0.732 0.711 0.687 
ring 0.928 0.866 0.971 0.892 0.880 0.897 0.893 0.863 

saheart 0.667 0.652 0.602 0.686 0.678 0.697 0.671 0.704 
satimage 0.886 0.824 0.857 0.841 0.835 0.861 0.872 0.826 
segment 0.953 0.926 0.945 0.928 0.925 0.931 0.934 0.929 

sonar 0.725 0.664 0.691 0.659 0.663 0.647 0.745 0.634 
spambase 0.926 0.891 0.900 0.896 0.894 0.894 0.931 0.891 

spectfheart 0.802 0.719 0.671 0.783 0.749 0.731 0.791 0.761 
splice 0.954 0.883 0.578 0.888 0.884 0.912 0.521 0.879 
texture 0.960 0.867 0.982 0.884 0.893 0.918 0.935 0.863 
thyroid 0.992 0.994 0.939 0.994 0.994 0.942 0.988 0.993 

tic-tac-toe 0.779 0.757 0.672 0.729 0.751 0.733 0.607 0.721 
titanic 0.777 0.782 0.781 0.783 0.782 0.780 0.723 0.782 

twonorm 0.955 0.817 0.973 0.874 0.867 0.971 0.903 0.828 
vehicle 0.679 0.649 0.675 0.655 0.662 0.483 0.655 0.649 
vowel 0.644 0.530 0.705 0.557 0.555 0.503 0.640 0.530 
wine 0.848 0.837 0.961 0.826 0.842 0.954 0.842 0.786 

wisconsin 0.951 0.934 0.952 0.936 0.925 0.964 0.936 0.934 
yeast 0.567 0.526 0.502 0.520 0.549 0.549 0.489 0.549 
zoo 0.891 0.831 0.601 0.823 0.826 0.890 0.897 0.734 

 
In the sequel, in Table 3 and Table 4 the results of Friedman test [13] together with 

a statistical test [13] are presented, which are used in order to conduct comparisons 
among all algorithms considered in the study and the proposed algorithm for both 
situations that have already been examined.  

 
                                                           
2 Alg1: Self-training (Logitboost), Alg2: Self-Training (C45), Alg3: Self-Training (SMO), Alg4: Co-

Bagging (C45), Alg5: TriTraining (C45), Alg6: Democratic-Co, Alg7: CoForest, Alg8: Co-Training 

(C45) 
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Table 3. Average rankings of the algorithms in 10% labeled ratio (Friedman) and  
Holm / Hochberg (alpha=0.05) 

Algorithm 
Friedman 

Ranking 
p 

Holm/Hochberg 

Test 

Self-training  

(Logitboost) 
3.0408163265306114 - - 

TriTraining (C45) 3.9693877551020407 0.060602 0.05 

CoForest 4.265306122448979 0.013347 0.025 

Co-Bagging (C45) 4.316326530612245 0.009953 0.01666 

Democratic-Co 4.591836734693876 0.001723 0.0125 

Self-Training (C45) 4.979591836734695 8.94E-5 0.01 

Self-Training (SMO) 5.336734693877552 3.49E-6 0.00833 

Co-Training (C45) 5.500000000000001 6.72E-7 0.00714 

 

Table 4. Average rankings of the algorithms in 20% labeled ratio (Friedman) and  
Holm / Hochberg (alpha=0.05) 

Algorithm 
Friedman 

Ranking 
p 

Holm/Hochberg 

Test 

Self-training  

(Logitboost) 
2.724489795918366 - - 

TriTraining (C45) 4.469387755102042 4.22E-4 0.05 

CoForest 4.510204081632654 3.08E-4 0.025 

Co-Bagging (C45) 4.5306122448979576 2.63E-4 0.01666 

Democratic-Co 4.530612244897959 2.63E-4 0.0125 

Co-Training (C45) 4.969387755102043 5.72E-6 0.01 

Self-Training (C45) 5.030612244897958 3.16E-6 0.00833 

Self-Training (SMO) 5.2346938775510194 3.93E-7 0.00714 
 

As a result, the proposed algorithm gives statistical better results than all the tested 
algorithms. Better probability-based ranking and high classification accuracy could 
select the high-confidence predictions in the selection step of self-training and therefore, 
the proposed method improved the performance of self-training. The proposed approach 
performs better than the tested state of the art algorithms in the tested datasets. 

5 Tool Presentation 

Ιn this section a short presentation of a tool that implements the semi-supervised  
proposed algorithm is provided. First of all, its display is illustrated in Figure 2.  
Secondly, it is easily observable that it is simple enough, as it contains only three 
buttons through which the user can interact with. Moreover, because it is developed 
using JAVA, it is platform independent. The only restriction is the hardware require-
ment of 64-bit CPU combined with 4GB RAM. 
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process difficult, as supervised learning methods cannot produce a classifier with 
good generalization performance.  

The main difficulty in self-training task is to find a set of high confidence predic-
tions of unlabeled instances. Although for a lot of domains, decision tree classifiers 
produce accurate classifiers, they provide poor probability estimates [28-29]. The 
reason is that the sample size at the leaves is small in most of the time, and all in-
stances at a leaf get the same probability. In addition, the probability estimate is the 
proportion of the majority class at the leaf of a pruned decision tree. 

In this work, a self-train Logitboost algorithm is presented. The self-train process 
improves the results by using the accurate class probabilities for which the Logitboost 
regression tree model is more confident at the unlabeled instances. We performed a 
comparison with other well-known semi-supervised classification methods on stan-
dard benchmark datasets and the presented technique had better accuracy in most 
cases. In spite of these results, no general method will work always. 

 In the near future, we will try to improve the results of proposed method combin-
ing the probabilities of class membership with a distance metric between unlabeled 
instances and labeled instances [21]. 
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