
© Springer International Publishing Switzerland 2015
L. Iliadis et al. (Eds.): EANN 2015, CCIS 517, pp. 1–10, 2015.
DOI: 10.1007/978-3-319-23983-5_14

Self-Train LogitBoost for Semi-supervised Learning

Stamatis Karlos1(), Nikos Fazakis2, Sotiris Kotsiantis1, and Kyriakos Sgarbas2

1 Department of Mathematics, University of Patras, Patras, Greece
{stkarlos,kotsiantis}@upatras.gr

2 Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
fazakis@ece.upatras.gr, sgarbas@upatras.gr

Abstract. Semi-supervised classification methods are based on the use of
unlabeled data in combination with a smaller set of labeled examples, in order
to increase the classification rate compared with the supervised methods, in
which the total training is executed only by the usage of labeled data. In this
work, a self-train Logitboost algorithm is presented. The self-train process
improves the results by using the accurate class probabilities for which
the Logitboost regression tree model is more confident at the unlabeled
instances. We performed a comparison with other well-known semi-supervised
classification methods on standard benchmark datasets and the presented
technique had better accuracy in most cases.

Keywords: Semi-supervised learning · Logitboost · Classification method ·
Labeled and/or unlabeled data

1 Introduction

Supervised machine learning algorithms need a large number of labeled data to assign
an unlabeled example to a class. As a consequence, this characteristic demands too
much effort from a specialist, as the stage of labeling all the instances, is necessary.
On the contrary, semi-supervised techniques are more automated, since their needs for
labeled data are dramatically reduced and can be easily applied in a variety of fields,
such as text mining, image or speech classification etc. [2].

Sun [11] reviews theories developed to understand the properties of multi-view
learning and gives a taxonomy of approaches according to the supervised and semi-
supervised machine learning mechanisms involved. In this work, a self-training me-
thod that combines the power of Logitboost and regression trees for semi-supervised
tasks is proposed. We performed a comparison with other well-known semi-
supervised classification methods on standard benchmark datasets and the presented
technique had better accuracy in most cases.

2 Semi-supervised Techniques

The main idea of the self-training technique is the tuning of more than one classifiers,
so as to achieve a better classification accuracy [1]. The whole procedure is split into

2 S. Karlos et al.

several phases. During the first one, a classifier of the user’s choice is trained using
the small set of labeled examples. After this phase has been completed, unlabeled
examples are examined and classified according to the knowledge that our learner has
acquired from the previous stage. When the second phase has been finished, all the
instances that were previously unlabeled and for which the learner’s prediction ex-
ceeds a trust-threshold, are added to the training set along with their predicted labels.
Next steps include the re-training of the classifier, under the assumption that the new
training set provides us more useful information, until all the stopping criteria are met.

Co-Training is based on the hypothesis that the attribute space can be split into two
disjoint subsets and that each subset may contribute to correct classification [4].
According to this guess, a single learner is trained on each subset. To begin with, both
learners are trained only on labeled data. The next phase comprises the classification
of usually a small number of unlabeled examples by both previous learners. During
this phase, the most confident predictions of each one learner are added to the training
set of the other one. This procedure continues to be repeated for a number of times,
until a stopping criteria to be satisfied. Didaci et al [16] evaluated co-training perfor-
mance as a function of the size of the labeled training set. It seems that the concept of
using co-training can work even with very few instances per class. However, Du et al
[20] made a number of experiments and came to the conclusion that relying on small
labeled training sets, verification of both the sufficiency and independence assump-
tions of splitting single view into two views are unreliable.

Sun and Jin [10] proposed robust co-training, in which the predictions of
co-training on the unlabeled data are tested through Canonical correlation analysis
(CCA) with the intention to enlarge the training set, adding only these instances
whose predicted labels are consistent with the outcome of CCA. Wang et al [5]
proposed to combine the probabilities of class membership with a distance metric
between unlabeled instances and labeled instances. If two instances have the same
class probability value, the one with the smallest distance will have larger chance to
be selected. Xu et al [6] proposed DCPE co-training algorithm. For each classifier, if
unlabeled instances have the same prediction labels and the highest class probability
values differences between this classifier and the other one, then these unlabeled
examples are added into the training set of the classifier. COTRADE [18] uses a
number of predicted labels with higher confidence of either learner are passed to the
other one, if a number of constraints are imposed to avoid introducing noise.

Li and Zhou [7] proposed Co-Forest algorithm. According to this algorithm, a
number of Random Trees are trained on bootstrap sample data from the data set. Then
each Random Tree is refined with a small number of unlabeled instances during the
training process and the final prediction is produced by majority voting. Deng and
Guo [12] proposed a new Co-Forest algorithm named ADE-Co-Forest which uses a
data editing technique to identify and discard probably mislabeled instances during
the iterations. Co-training by committee has been proposed by Hady and Schwenker
[8]. In their work, an initial committee was built with the labeled data set. Three
ensemble methods were used: Bagging, AdaBoost and Random Subspace and
these semi-supervised learning algorithms were named as CoBag, CoAdaBoost
and CoRSM, respectively. Liu and Yuen [22] also proposed a boosted co-training
algorithm.

 Self-Train LogitBoost for Semi-supervised Learning 3

Tri-training algorithm has been proposed by Zhou and Li [3]. In each round of tri-
training algorithm, an unlabeled instance is labeled for a learner if the other two
learners agree on the labeling. Guo and Li [17] proposed improved tri-training algo-
rithm (im-tri-training) that addresses some issues existed in tri-training such as
unsuitable error estimation. Democratic co-learning [9] also uses multiple classifiers.
Initially, each classifier is trained with the same data. The classifiers are then used to
label the unlabeled data. Each instance is then labeled with the majority voting, and
the labeled instance is added to the training set of the classifier whose prediction dis-
agree with the majority. Sun and Zhang [19] proposed an ensemble of classifiers to be
trained from each view, and the consensus prediction of the ensemble to be used to
select confident labeled instances from the unlabeled data to teach the other ensemble
from the other view.

3 Proposed Algorithm

Regression trees are obtained using a fast divide and conquer greedy algorithm that
recursively partitions the given training set into smaller subsets. The most well-known
regression tree inducer is the M5 [14]. In spite of their advantages regression trees
are also known for their instability, since a small change in the training data can lead
to a different choice when building a node, which in turn can produce a dramatic
change in the regression tree, particularly if the change occurs in top level nodes.
A well-known technique to improve the accuracy of tree-based classifiers is the
boosting procedure. The idea of boosting is to combine the prediction of many simple
classifiers to form a powerful 'committee'. The simple classifiers are trained on
reweighted versions of the training data, such that training instances that have been
misclassified by the classifiers built so far, receive a higher weight and the new
classifier can concentrate on these hard instances.

Additive logistic regression algorithm: Logitboost [13] is based on the observation
that boosting is in essence fitting an additive logistic regression model to the training
data. An additive model is an approximation to a function F(x) of the form:

 (1)

where the cm are constants to be determined and fm are basis functions. It must be
mentioned that m is number of classifiers and is set equal to 10 in our implementa-
tion.

If we assume that F(x) is the mapping that we seek to fit as our strong aggregate
hypothesis, and f(x) are our weak hypotheses, then it can be shown that the two-class
boosting algorithm is fitting such a model by minimizing the criterion:

 (2)

1

() ()
M

m m
m

F x c f x
=

=

()() ()yF xJ F E e−=

4 S. Karlos et al.

where y is the true class label in {-1,1}. Logitboost minimises this criterion by using
Newton-like steps to fit an additive logistic regression model to directly optimise the
binomial log-likelihood:

 (3)

Friedman et al [13] used Logitboost algorithm with one level decision tree as base
learner for solving supervised classification problems. A very useful property of this
classification method is that it directly yields class conditional probability estimates
that are crucial for constructing self-train classifiers. Regression trees are known for
their simplicity and efficiency when dealing with domains with large number of fea-
tures and instances. In this work, we propose a self-training method that combines the
power of Logitboost and regression trees for semi-supervised tasks. The proposed
algorithm (Self-Logit-M5) is presented in Figure 1. The self-train process produces
good results by using the more accurate class probabilities of Logitboost regression
tree model for the unlabeled instances.

Input: An initial set of labeled instances L and a set of unlabeled instances U
Initialization:
• Train Logitboost using M5 as base model on L
Loop for a number of iterations (40 in our implementation)
• Use Logitboost classifier to select the most confident predictions, remove

them from U and add them to L. In each iteration about 2 instances per class
are removed from U and added to L.

Output: Use Logitboost trained on L to predict class labels of the test cases.

Fig. 1. The Self-Logit-M5 Algorithm

For the implementation, it must be mentioned that we made use of the free availa-
ble code of Weka [24] and KEEL [25].

4 Experiments

The experiments are based on standard classification datasets taken from the KEEL-
dataset repository [23]. These data sets have been partitioned using the 10-fold cross-
validation procedure. For each generated fold, a given algorithm is trained with the
examples contained in the rest of folds (training partition) and then tested with the
current fold. Each training partition is divided into two parts: labeled and unlabeled
examples. In order to study the influence of the amount of labeled data, we take two
different ratios when dividing the training set: 10% and 20%.

For the experiments, the proposed method has been compared with other state of
the art algorithms integrated into the KEEL tool [23] such as Self-Training (C45) [1],
Self-Training (SMO) [27], Co-Bagging (C45) [8], TriTraining (C45) [3], Democratic-
Co [9], CoForest [7] and Co-Training (C45) [4]. It must be mentioned that the default
parameters of KEEL were used for all the tested algorithms. The classification

2 ()log(1)yF xe−− +

 Self-Train LogitBoost for Semi-supervised Learning 5

accuracy of each tested algorithm using 10% and 20% as labeled ratio is presented in
Table 1 and Table 2 respectively. As it concerns the values in bold style, they actually
point the best accuracy value in each row among the different algorithms.

Table 1. Classification accuracy (Labeled Ratio 10%)

Datasets

Algorithms1
Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8

appendicitis 0.862 0.832 0.754 0.805 0.805 0.822 0.823 0.832
australian 0.828 0.828 0.796 0.828 0.845 0.845 0.841 0.835

banana 0.877 0.848 0.896 0.855 0.848 0.842 0.527 0.848
breast 0.672 0.722 0.691 0.725 0.722 0.729 0.734 0.677
bupa 0.606 0.539 0.633 0.612 0.574 0.510 0.585 0.574
chess 0.956 0.954 0.896 0.954 0.958 0.920 0.944 0.952

coil2000 0.922 0.937 0.572 0.935 0.936 0.932 0.930 0.940
contraceptive 0.500 0.489 0.450 0.483 0.481 0.436 0.485 0.446

crx 0.801 0.866 0.832 0.850 0.856 0.850 0.821 0.816
dermatology 0.863 0.856 0.840 0.876 0.882 0.876 0.905 0.843

ecoli 0.641 0.647 0.622 0.656 0.659 0.637 0.628 0.577
flare 0.721 0.721 0.516 0.714 0.716 0.721 0.402 0.574

german 0.713 0.706 0.592 0.711 0.717 0.716 0.686 0.690
glass 0.553 0.485 0.496 0.490 0.492 0.487 0.559 0.450

haberman 0.650 0.705 0.601 0.712 0.709 0.716 0.601 0.719
heart 0.763 0.678 0.770 0.704 0.715 0.800 0.693 0.700

hepatitis 0.793 0.834 0.834 0.834 0.834 0.834 0.811 0.834
housevotes 0.921 0.941 0.876 0.920 0.916 0.890 0.922 0.823

iris 0.900 0.840 0.940 0.800 0.727 0.913 0.933 0.847
led7digit 0.686 0.614 0.568 0.564 0.604 0.616 0.634 0.514

lymphography 0.737 0.631 0.549 0.595 0.612 0.490 0.646 0.573
magic 0.849 0.822 0.839 0.832 0.825 0.784 0.844 0.820

mammographic 0.809 0.803 0.782 0.809 0.818 0.796 0.794 0.807
monk-2 0.953 0.973 0.783 0.966 0.966 0.908 0.939 0.973

mushroom 0.996 0.997 0.992 0.995 0.996 0.993 0.908 0.997
nursery 0.962 0.906 0.815 0.901 0.904 0.895 0.381 0.903

page-blocks 0.953 0.952 0.940 0.957 0.956 0.908 0.959 0.949
penbased 0.965 0.892 0.976 0.905 0.903 0.947 0.955 0.896
phoneme 0.829 0.777 0.829 0.789 0.777 0.787 0.801 0.765

pima 0.680 0.664 0.608 0.634 0.656 0.697 0.663 0.670
ring 0.904 0.840 0.970 0.858 0.854 0.874 0.882 0.837

saheart 0.645 0.652 0.613 0.650 0.678 0.682 0.656 0.636
satimage 0.870 0.805 0.825 0.821 0.822 0.846 0.860 0.806
segment 0.931 0.890 0.907 0.916 0.900 0.903 0.903 0.902

sonar 0.686 0.643 0.669 0.701 0.702 0.601 0.755 0.582
spambase 0.917 0.867 0.851 0.895 0.881 0.878 0.919 0.888

spectfheart 0.749 0.682 0.656 0.757 0.757 0.738 0.775 0.724
splice 0.938 0.827 0.541 0.825 0.825 0.898 0.507 0.831
texture 0.929 0.831 0.963 0.850 0.852 0.894 0.907 0.829
thyroid 0.987 0.992 0.932 0.991 0.992 0.939 0.986 0.992

tic-tac-toe 0.741 0.711 0.627 0.704 0.709 0.690 0.597 0.693
titanic 0.780 0.775 0.776 0.784 0.777 0.776 0.707 0.778

twonorm 0.949 0.814 0.973 0.860 0.862 0.965 0.899 0.809
vehicle 0.633 0.579 0.586 0.603 0.619 0.502 0.612 0.575
vowel 0.495 0.424 0.463 0.456 0.453 0.416 0.522 0.438
wine 0.854 0.741 0.955 0.787 0.820 0.949 0.859 0.808

wisconsin 0.945 0.909 0.952 0.928 0.931 0.965 0.936 0.906
yeast 0.506 0.462 0.458 0.477 0.491 0.489 0.456 0.489
zoo 0.841 0.679 0.493 0.746 0.719 0.931 0.909 0.636

1
Alg1: Self-training (Logitboost), Alg2: Self-Training (C45), Alg3: Self-Training (SMO), Alg4: Co-

Bagging (C45), Alg5: TriTraining (C45), Alg6: Democratic-Co, Alg7: CoForest, Alg8: Co-Training (C45)

6 S. Karlos et al.

Table 2. Classification accuracy (Labeled Ratio 20%)

Datasets

Algorithms2
Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8

appendicitis 0.887 0.851 0.705 0.832 0.832 0.860 0.877 0.850
australian 0.859 0.858 0.830 0.836 0.852 0.858 0.842 0.838

banana 0.886 0.880 0.899 0.880 0.874 0.879 0.541 0.874
breast 0.687 0.716 0.636 0.722 0.723 0.718 0.727 0.723
bupa 0.641 0.606 0.611 0.603 0.620 0.550 0.602 0.606
chess 0.978 0.978 0.948 0.978 0.978 0.939 0.951 0.976

coil2000 0.923 0.940 0.817 0.934 0.937 0.933 0.927 0.940
contraceptive 0.515 0.478 0.471 0.481 0.488 0.484 0.494 0.504

crx 0.833 0.857 0.860 0.851 0.854 0.859 0.841 0.850
dermatology 0.924 0.910 0.910 0.919 0.921 0.930 0.924 0.879

ecoli 0.774 0.720 0.670 0.732 0.721 0.724 0.748 0.733
flare 0.720 0.728 0.585 0.718 0.727 0.740 0.416 0.690

german 0.714 0.697 0.618 0.712 0.684 0.729 0.684 0.699
glass 0.628 0.509 0.551 0.563 0.610 0.480 0.634 0.535

haberman 0.686 0.709 0.660 0.735 0.709 0.722 0.640 0.735
heart 0.789 0.752 0.789 0.748 0.793 0.822 0.730 0.756

hepatitis 0.747 0.843 0.834 0.820 0.843 0.834 0.861 0.843
housevotes 0.931 0.959 0.888 0.953 0.959 0.902 0.945 0.936

iris 0.893 0.893 0.913 0.867 0.880 0.953 0.940 0.893
led7digit 0.692 0.678 0.644 0.658 0.676 0.662 0.678 0.644

lymphography 0.817 0.706 0.649 0.747 0.755 0.461 0.693 0.775
magic 0.855 0.830 0.842 0.841 0.834 0.802 0.852 0.832

mammographic 0.823 0.823 0.793 0.825 0.816 0.808 0.787 0.823
monk-2 0.977 0.980 0.869 0.973 0.973 0.944 0.979 0.980

mushroom 1.000 0.999 0.997 0.999 0.999 0.998 0.910 0.999
nursery 0.984 0.924 0.576 0.924 0.926 0.911 0.384 0.926

page-blocks 0.965 0.960 0.957 0.961 0.961 0.912 0.959 0.961
penbased 0.979 0.924 0.983 0.937 0.929 0.963 0.966 0.925
phoneme 0.851 0.784 0.848 0.824 0.798 0.806 0.831 0.802

pima 0.734 0.681 0.646 0.708 0.694 0.732 0.711 0.687
ring 0.928 0.866 0.971 0.892 0.880 0.897 0.893 0.863

saheart 0.667 0.652 0.602 0.686 0.678 0.697 0.671 0.704
satimage 0.886 0.824 0.857 0.841 0.835 0.861 0.872 0.826
segment 0.953 0.926 0.945 0.928 0.925 0.931 0.934 0.929

sonar 0.725 0.664 0.691 0.659 0.663 0.647 0.745 0.634
spambase 0.926 0.891 0.900 0.896 0.894 0.894 0.931 0.891

spectfheart 0.802 0.719 0.671 0.783 0.749 0.731 0.791 0.761
splice 0.954 0.883 0.578 0.888 0.884 0.912 0.521 0.879
texture 0.960 0.867 0.982 0.884 0.893 0.918 0.935 0.863
thyroid 0.992 0.994 0.939 0.994 0.994 0.942 0.988 0.993

tic-tac-toe 0.779 0.757 0.672 0.729 0.751 0.733 0.607 0.721
titanic 0.777 0.782 0.781 0.783 0.782 0.780 0.723 0.782

twonorm 0.955 0.817 0.973 0.874 0.867 0.971 0.903 0.828
vehicle 0.679 0.649 0.675 0.655 0.662 0.483 0.655 0.649
vowel 0.644 0.530 0.705 0.557 0.555 0.503 0.640 0.530
wine 0.848 0.837 0.961 0.826 0.842 0.954 0.842 0.786

wisconsin 0.951 0.934 0.952 0.936 0.925 0.964 0.936 0.934
yeast 0.567 0.526 0.502 0.520 0.549 0.549 0.489 0.549
zoo 0.891 0.831 0.601 0.823 0.826 0.890 0.897 0.734

In the sequel, in Table 3 and Table 4 the results of Friedman test [13] together with

a statistical test [13] are presented, which are used in order to conduct comparisons
among all algorithms considered in the study and the proposed algorithm for both
situations that have already been examined.

2 Alg1: Self-training (Logitboost), Alg2: Self-Training (C45), Alg3: Self-Training (SMO), Alg4: Co-

Bagging (C45), Alg5: TriTraining (C45), Alg6: Democratic-Co, Alg7: CoForest, Alg8: Co-Training

(C45)

 Self-Train LogitBoost for Semi-supervised Learning 7

Table 3. Average rankings of the algorithms in 10% labeled ratio (Friedman) and
Holm / Hochberg (alpha=0.05)

Algorithm
Friedman

Ranking
p

Holm/Hochberg

Test

Self-training

(Logitboost)
3.0408163265306114 - -

TriTraining (C45) 3.9693877551020407 0.060602 0.05

CoForest 4.265306122448979 0.013347 0.025

Co-Bagging (C45) 4.316326530612245 0.009953 0.01666

Democratic-Co 4.591836734693876 0.001723 0.0125

Self-Training (C45) 4.979591836734695 8.94E-5 0.01

Self-Training (SMO) 5.336734693877552 3.49E-6 0.00833

Co-Training (C45) 5.500000000000001 6.72E-7 0.00714

Table 4. Average rankings of the algorithms in 20% labeled ratio (Friedman) and
Holm / Hochberg (alpha=0.05)

Algorithm
Friedman

Ranking
p

Holm/Hochberg

Test

Self-training

(Logitboost)
2.724489795918366 - -

TriTraining (C45) 4.469387755102042 4.22E-4 0.05

CoForest 4.510204081632654 3.08E-4 0.025

Co-Bagging (C45) 4.5306122448979576 2.63E-4 0.01666

Democratic-Co 4.530612244897959 2.63E-4 0.0125

Co-Training (C45) 4.969387755102043 5.72E-6 0.01

Self-Training (C45) 5.030612244897958 3.16E-6 0.00833

Self-Training (SMO) 5.2346938775510194 3.93E-7 0.00714

As a result, the proposed algorithm gives statistical better results than all the tested
algorithms. Better probability-based ranking and high classification accuracy could
select the high-confidence predictions in the selection step of self-training and therefore,
the proposed method improved the performance of self-training. The proposed approach
performs better than the tested state of the art algorithms in the tested datasets.

5 Tool Presentation

Ιn this section a short presentation of a tool that implements the semi-supervised
proposed algorithm is provided. First of all, its display is illustrated in Figure 2.
Secondly, it is easily observable that it is simple enough, as it contains only three
buttons through which the user can interact with. Moreover, because it is developed
using JAVA, it is platform independent. The only restriction is the hardware require-
ment of 64-bit CPU combined with 4GB RAM.

8 S. Karlos et al.

Fig. 2. Illustration of th

To begin with the descrip
to follow the standard steps
set has to be chosen throug
train set has to consist of
contain 10% labeled instan
instances over his train set.
test set. The difference in c
fers to the class of each ins
Algorithm button, a file na
with the Experimenter prog
tested instance.

As it considers the data s
text files, with the .dat exte
data describing the data set
for downloading this tool a
math.upatras.gr/~sotos/Self

6 Conclusion

It is promising to develop t
classification tasks. The lim

he corresponding tool for Self-train LogitBoost Algorithm.

ption, anyone who wants to run the proposed algorithm
s that semi-supervised theory includes. Particularly, a tr
gh the first button Choose. It must be mentioned that
both labeled and unlabeled instances. The provided

nces, but the user can adjust the percentage of unlabe
. After the completion of this step, the user can choose
comparison with the train set is that the column which
stance simply does not exist. After that, selecting the S
amed as predictions.txt will be created in the same fol
gram, which finally will contain the class prediction of e

sets that are used by this tool, are managed by plain AS
ension. Each data file is composed by header (basic me
t) and data (content of the dataset). The corresponding l
and some basics instructions is the following: http://ww
fLogitBoost-Experiment.zip.

techniques that use both labeled and unlabeled instance
mited availability of labeled examples makes the learn

has
rain
the

sets
eled
the

h re-
Start
lder

each

SCII
eta-
link
ww.

s in
ning

 Self-Train LogitBoost for Semi-supervised Learning 9

process difficult, as supervised learning methods cannot produce a classifier with
good generalization performance.

The main difficulty in self-training task is to find a set of high confidence predic-
tions of unlabeled instances. Although for a lot of domains, decision tree classifiers
produce accurate classifiers, they provide poor probability estimates [28-29]. The
reason is that the sample size at the leaves is small in most of the time, and all in-
stances at a leaf get the same probability. In addition, the probability estimate is the
proportion of the majority class at the leaf of a pruned decision tree.

In this work, a self-train Logitboost algorithm is presented. The self-train process
improves the results by using the accurate class probabilities for which the Logitboost
regression tree model is more confident at the unlabeled instances. We performed a
comparison with other well-known semi-supervised classification methods on stan-
dard benchmark datasets and the presented technique had better accuracy in most
cases. In spite of these results, no general method will work always.

 In the near future, we will try to improve the results of proposed method combin-
ing the probabilities of class membership with a distance metric between unlabeled
instances and labeled instances [21].

References

1. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object de-
tection models. In: 7th IEEE Workshop on Applications of Computer Vision, pp. 29–36
(2005)

2. Friedhelm, S., Edmondo, T.: Pattern classification and clustering: A review of partially
supervised learning approaches. Pattern Recognition Letters 37, 4–14 (2014)

3. Zhou, Z.-H., Li, M.: Tri-Training: Exploiting Unlabeled Data Using Three Classifiers.
IEEE Trans. on Knowledge and Data Engg. 17(11), 1529–1541 (2005)

4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge
(2006)

5. Wang, S., Wu, L., Jiao, L., Liu, H.: Improve the performance of co-training by committee
with refinement of class probability estimations. Neurocomputing 136, 30–40 (2014)

6. Xu, J., He, H., Man, H.: DCPE co-training for classification. Neurocomputing 86, 75–85
(2012)

7. Li, M., Zhou, Z.: Improve computer-aided diagnosis with machine learning techniques
using undiagnosed samples. IEEE Trans. Syst. Man Cybernet, 1088–1098 (2007)

8. Hady, M., Schwenker, F.: Co-training by committee: a new semi-supervised learning
framework. In: Proceedings of the IEEE International Conference on Data Mining
Workshops, pp. 563–572 (2008)

9. Zhou, Y., Goldman, S.: Democratic co-learning. In: Ictai, 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 594–202 (2004)

10. Sun, S., Jin, F.: Robust co-training. Int. J. Pattern Recognit. Artif. Intell. 25, 1113–1126
(2011)

11. Sun, S.: A survey of multi-view machine learning. Neural Computing and Applications
23(7–8), 2031–2038 (2013)

12. Deng, C., Guo, M.Z.: A new co-training-style random forest for computer aided diagnosis.
Journal of Intelligent Information Systems 36, 253–281 (2011)

10 S. Karlos et al.

13. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of
boosting. Ann. Statist. 28(2), 337–407 (2000)

14. Torgo, L.: Inductive learning of tree-based regression models. AI Communications 13(2),
137–138 (2000)

15. Jiang, Z., Zhang, S., Zeng, J.: A hybrid generative/discriminative method for
semi-supervised classification. Knowledge-Based Systems 37, 137–145 (2013)

16. Didaci, L., Fumera, G., Roli, F.: Analysis of co-training algorithm with very small training
sets. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S.,
Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 719–726.
Springer, Heidelberg (2012)

17. Guo, T., Li, G.: Improved tri-training with unlabeled data. In: Wu, Y. (ed.) Software
Engineering and Knowledge Engineering: Vol. 2. AISC, vol. 115, pp. 139–148. Springer,
Heidelberg (2012)

18. Zhang, M.-L., Zhou, Z.-H.: CoTrade: Confident co-training with data editing. IEEE Trans.
Syst. Man Cybernet, Part B: Cybernetics 41(6), 1612–1626 (2011)

19. Sun, S., Zhang, Q.: Multiple-View Multiple-Learner Semi-Supervised Learning. Neural
Process. Lett. 34, 229–240 (2011)

20. Du, J., Ling, C.X., Zhou, Z.-H.: When. does cotraining work in real data? IEEE Trans. on
Knowledge and Data Engg. 23(5), 788–799 (2011)

21. Zhu, X., Goldberg, A.: Introduction to semi-supervised learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Claypool (2009)

22. Liu, C., Yuen, P.C.: A boosted co-training algorithm for human action recognition. IEEE
Trans. on Circuits and Systems for Video Technology 21(9), 1203–1213 (2011). 5739520

23. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.:
KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and
Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft Computing
17(2–3), 255–287 (2011)

24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Da-
ta Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

25. Triguero, I., Garca, S., Herrera, F.: Self-labeled techniques for semi-supervised learning:
taxonomy, software and empirical study. Knowledge and Information Systems 42(2),
245–284 (2015)

26. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for mul-
tiple comparisons in the design of experiments in computational intelligence and data min-
ing: Experimental analysis of power. Inf. Sciences 180(10), 2044–2064 (2010)

27. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s
SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)

28. Mease, D., Wyner, A.J., Buja, A.: Boosted classification trees and class probabili-
ty/quantile estimation. J. Mach. Learn. Res. 8, 409–439 (2007)

29. Provost, F.J., Domingos, P.: Tree induction for probability based ranking. Mach. Learn.
52, 199–215 (2003)

