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ABSTRACT 
Two aspects of stereo imaging accuracy from audio system listening have been investigated: (i) panned phantom 
image localization accuracy at 50 steps and (ii) sweet spot spatial spread from the ideal anechoic reference.  The 
simulated study used loudspeakers of different directivity under ideal anechoic or varying reverberant room 
conditions and extracted binaural auditory features (ILDs, ITDs and ICs) from the received audio signals. For 
evaluation, a Decision Tree classifier was used under a sparse data self-training achieving localization accuracy 
ranging from 92% (for ideal anechoic when training/test data were similar audio category), down to 55% (for high 
reverberation when training/test data were different music segments).Sweet spot accuracy was defined and evaluated 
as a spatial spread distribution function. 

1.  INTRODUCTION 

The quality of stereophonic reproduction cannot be 
accessed via objective metrics since it depends on many 
variables related to loudspeaker-listening space 
coupling [1]. This work employs a binaural parameter 
extraction, analysis and classification approach for 
typical stereo set-ups in different listening room 
scenarios and introduces perceptually-relevant 
evaluation tools for assessing phantom image 
localization and sweet spot spatial definition. Other 
relevant qualities such as Apparent Source Width and 
Listener Envelopment related to spatial impression will 
not be considered here. Phantom image accuracy is the 
robustness of perceptual illusion achieved from the 
summing localization generated by the 2 loudspeaker 
signals [1] here accessed via the accuracy of the 
perceived Direction of Arrival Angle (DOA) with 
respect to the intended image positioning.  
 

 
 
 
Sweet spot accuracy relates to the maximum 
displacement from the nominal centre position that can 
result to a predetermined degree of perceived interaural 
level (ILD) or delay (ITD) degradation [2].  
The obvious advantages of introducing a “virtual 
listener” assessment tool for such scenarios were 
initially examined in [3]. Today, such an approach 
becomes even more relevant due to the introduction of 
complex multichannel reproduction systems [4,5] but 
also due to the emerging need for objective evaluation 
of small-size portable stereo devices which often 
employ room boundary reflections to improve spatial 
imaging. The work uses binaural modeling to derive 
interaural cues, the analysis for sweet spot assessment 
extending the work by Weirstorf and Spors [5] and 
employs a novel phantom image angle Decision Tree 
classifier based on a highly efficient semi supervised 
training stage [6]. 
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2. SIMULATIONS 

The tests were based on simulated experiments for a 
stereo reproduction scenario with 2 loudspeakers at 2m 
distance and a height of 1.2m facing at 300 a virtual 
listener seated at the ideal sweet spot position (Fig.1). 
The BRIRs were evaluated via the CATT-acoustic 
acoustic simulation software [7], utilizing source 
directivity from CLF files [8].  

 

Figure 1 The stereo setup used in the simulations. 
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 Figure 2 Simulations and binaural cue extraction. 

As shown in Fig.2, the binaural signals yL(t) and yR(t) 
were generated according to eq. (1): 

  𝑦𝑦𝐿𝐿(𝑡𝑡) =  {(𝑎𝑎𝐿𝐿𝑥𝑥(𝑡𝑡) ∗ ℎ𝐿𝐿(𝑡𝑡)) ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 + 
                                  (𝑎𝑎𝑅𝑅𝑥𝑥(𝑡𝑡) ∗ ℎ𝑅𝑅(𝑡𝑡)) ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐿𝐿𝑅𝑅}
 𝑦𝑦𝑅𝑅(𝑡𝑡) =  {(𝑎𝑎𝐿𝐿𝑥𝑥(𝑡𝑡) ∗ ℎ𝐿𝐿(𝑡𝑡)) ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝐿𝐿 + 
                                  (𝑎𝑎𝑅𝑅𝑥𝑥(𝑡𝑡) ∗ ℎ𝑅𝑅(𝑡𝑡)) ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅}       (1) 
 

Table 1 Room – loudspeaker test scenarios 

The test conditions are given in Table 1. The test signals 
consisted of white noise bursts with different duty cycle 

of noise and silence intervals, as well as anechoic audio 
recordings of speech and music signals. All signals had 
a total duration of 10 sec. From the signals yL(t) and 
yR(t), a binaural model  was employed [9,5] deriving 32 
subband ITD, ILD and IC cues per segment (instant). 

3. EVALUATION METHOD 

3.1. Sweet spot area 

Here the sweet spot was evaluated from the DOA angles 
of the binaural cues (Fig.3) [5]. Thus, at each listening 
position, the divergence angle (𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑) between the 
estimate and the ideal one was evaluated, here assumed 
to be at the nominal central panning position. This 
divergence angle is compared to the critical angle (here 
𝜃𝜃𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐 = 50) beyond which a degradation in the image 
accuracy is assumed to occur [5,9]. The sweet spot area 
is defined as the listening area for which the divergence 
angle is not greater than 𝜃𝜃𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐 . 

Binaural 
cues

DOA 
Evaluation 

Spatial 
Mask 

Estimation

Sweet-
Spot 

Extraction
 

Figure 3  Sweet spot evaluation method 

A N-by-N grid is evaluated containing the 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 of each 
position so that the sweet spot is obtained for the grid 
points for which 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝜃𝜃𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐 = 5°. We can define 
sweet-spot spatial accuracy A(x,y), as the proximity to 
the ideal angle: 
 

𝐴𝐴(𝑥𝑥,𝑦𝑦) = �
𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−|𝜃𝜃𝑑𝑑𝑐𝑐𝑑𝑑|

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝜃𝜃𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐

      0  ,          𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒
      (2) 

 
Given that every listening position corresponds to a grid 
area (e.g. 𝑏𝑏 in cm2), we can define the Sweet Spot Area 
(SSA) in cm2 as: 
 

𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑏𝑏 ∙��𝐴𝐴𝑏𝑏𝑑𝑑𝑏𝑏(𝑥𝑥, 𝑦𝑦)
𝑦𝑦𝑥𝑥

,       

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑏𝑏𝑑𝑑𝑏𝑏(𝑥𝑥, 𝑦𝑦) = �1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐴𝐴(𝑥𝑥,𝑦𝑦) > 0
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒      (3) 

For the tests in Table 1, the distance between listening 
points was 10 cm, the grid having 21x21=441 points for 
a total listening area of 4.41 m2. For the results in Fig.5, 
the listening grid starts at 1 m from the loudspeakers. 

 

Acoustic 
condition 

Source 
type 

T0 anechoic omni 
T1 anechoic 2-way generic l/s 
T2 T1 + floor reflection 2-way generic l/s 
T3 ITU room  (RT=0.25s) 2-way generic l/s 
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3.2. Phantom Image classification 

Image classification assesses the robustness or deviation 
of the perceived Direction of Arrival Angle (DOA) with 
respect to the intended phantom source angle. For the 
symmetric stereo set-up, the phantom source angles 
𝜗𝜗𝑃𝑃𝑃𝑃𝑑𝑑 were generated using the sine panning law [10]: 
 
sin (𝜗𝜗𝑃𝑃𝑃𝑃

𝑐𝑐 )
sin (30𝑂𝑂)

= 𝑎𝑎𝐿𝐿−𝛼𝛼𝑅𝑅
𝛼𝛼𝐿𝐿+𝛼𝛼𝑅𝑅

 , 1 < 𝑖𝑖 < 7        (4) 
 
Steps of 5𝑂𝑂 were used creating 7 angle classes from left 
to centre (Fig. 1). The binaural cues extracted from the 
signals yL(t) and yR(t) were fed to a classifier trained 
with short segments of the signals. During the 
evaluation stage, the classifier was driven by cues 
derived from signals with random and hidden panning 
and estimated the DOA angle class. The classification 
accuracy ACCN(f) gives the ratio of correctly classified 
instances in the test set to the total number of the test 
instances N: 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁(𝑓𝑓) =  1

|𝑁𝑁|
∑ 𝐼𝐼(𝑓𝑓�𝑿𝑿𝑗𝑗� = 𝜗𝜗𝑃𝑃𝑃𝑃

𝑗𝑗 )|𝑁𝑁|
𝑗𝑗=1     (5) 

 
where 𝑓𝑓 is the classifier and 𝐼𝐼 is the identity factor, a 
logical function that gives 1 when 𝑓𝑓�𝑿𝑿𝑗𝑗� = 𝜗𝜗𝑃𝑃𝑃𝑃𝑑𝑑  and 
0 when  𝑓𝑓�𝑿𝑿𝑗𝑗� ≠ 𝜗𝜗𝑃𝑃𝑃𝑃𝑑𝑑 . The selected classifier follows 
the well-known Random Forest ensemble strategy [6]. 
Apart from the usual supervised procedure where 
binaural cues from labelled phantom source positions 
are employed to train the classifier, here an alternative 
semi-supervised learning method has been implemented 
[17,6]. Semi-supervised classification (SSC) aims to 
predict the class 𝜗𝜗𝑃𝑃𝑃𝑃𝑑𝑑   of the unlabeled phantom sources, 
using only a few labelled examples.   Two options for 
SSC were examined here:  
(a) Self-Training an iterative scheme during which 
unlabeled examples along with labelled are exploited, 
when their certainty exceeds a predefined threshold. 
(b) Co-Training where the feature vector is split into 
different binaural cue subsets (e.g. ILDs, ITDs) so that 
the mutual subset iterative knowledge building 
functions can develop a more robust and general 
learning model. 
The training / evaluation feature matrix is shown in Fig. 
4 and the number of instances N was: 
 
𝑁𝑁 = 𝑖𝑖 𝑥𝑥 𝑓𝑓𝑠𝑠(𝐻𝐻𝐻𝐻) 𝑥𝑥 𝐷𝐷𝐷𝐷𝑡𝑡𝑦𝑦𝐴𝐴𝑦𝑦𝐷𝐷𝑒𝑒𝑒𝑒(𝑒𝑒)𝑥𝑥 𝐿𝐿                (6) 
 
 where 𝑖𝑖 is the angle classes, 𝑓𝑓𝑒𝑒 is the sampling 
frequency (44.1kHz), DutyCycle is the duration of the 

burst signal cycle (1sec) and L is the labelled data 
coefficient. For the SSC, L = 0.1 so that cues from only 
100ms out of the 10s signals were utilised. 
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Figure 4 Example of the data structure used for the 
classifier training and evaluation  

4. RESULTS 

4.1. Sweet spot area 

The results of Fig.5 for noise burst signals, illustrate that 
the proposed SSA metric is extremely narrow for the 
ideal anechoic listening case and expands with the 
addition of early reflections due to room acoustics. 

T0 T2 T3
1

2

3

SSA = 2700 cm2 SSA = 3000 cm2 SSA = 3700 cm2
0 1-1 0 1-1 0 1-1

 
Figure 5 Sweet Spot Area for 3 different test scenarios 

4.2. Phantom image localization 

For the results in Fig.6, white noise burst training data 
from the ideal case T0 were used to evaluate phantom 
image angle of noise burst for listening scenarios T0-
T3. Only 100ms out of the 10s signal were employed 
for SSC training and evaluation. 

 

Figure 6 ACC % for different listening scenarios  
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In Fig.7, evaluation is shown for different audio signals 
reproduced in the ITU room set-up (T3). Here, the SSC 
was trained by white noise bursts in the anechoic T0 set-
up. When trained by similar signals in the T3 set-up, 
then ACC results improved for specific signal classes. 

 

 
Figure 7 ACC % for different signals for the case T3 

In Fig.8 the Chi-squared statistic from all SSC phantom 
image localization training cases are shown, indicating 
the significance of each feature on the training process. 
Note that the frequency-dependent complementarily 
between ITD and ILD resembles the duplex theory 
results [15]. Such prior knowledge will be further 
exploited in future optimization of SSC training. 

 

 

Figure 8 Chi-squared statistic for subband contributions 
in the SSC training – ITL  - - ILD .. IC and … theory. 

5. CONLUSIONS 

The preliminary study results indicates potential for the 
proposed objective stereo image evaluation based only 
on classification of binaural cues without use of higher 
level perceptual model. The SSC can detect accurately 
phantom images and as expected, the ACC accuracy 
reduces with reverberation; in contrast the sweet spot 
area expands with the addition of early reflections.  

Self-train and Co-train SSC options achieve comparable 
performance, which was superior in most cases to 

supervised training; significantly, both training and 
evaluation require binaural features from extremely 
short signal segments (100 ms) and accuracy is still 
acceptable when classification is performed for different 
signals and room conditions to those used for training.  
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